
Prediction of Atomic Web Services Reliability Based on
K-means Clustering

Marin Silic
University of Zagreb, Faculty
of Electrical Engineering and

Computing,
Unska 3, Zagreb

marin.silic@gmail.com

Goran Delac
University of Zagreb, Faculty
of Electrical Engineering and

Computing,
Unska 3, Zagreb

goran.delac@gmail.com

Sinisa Srbljic
University of Zagreb, Faculty
of Electrical Engineering and

Computing,
Unska 3, Zagreb

sinisa.srbljic@fer.hr

ABSTRACT
Contemporary web applications are often designed as com-
posite services built by coordinating atomic services with the
aim of providing the appropriate functionality. Although
the functional properties of each atomic service assure cor-
rect functionality of the entire application, the nonfunctional
properties such as availability, reliability, or security might
significantly influence the user-perceived quality of the ap-
plication. In this paper, we present CLUS, a model for
reliability prediction of atomic web services that improves
state-of-the-art approaches used in modern recommendation
systems. CLUS predicts the reliability for the ongoing ser-
vice invocation using the data collected from previous invo-
cations. We improve the accuracy of the current state-of-
the-art prediction models by considering user–, service– and
environment–specific parameters of the invocation context.
To address the computational performance related to scala-
bility issues, we aggregate the available previous invocation
data using K-means clustering algorithm. We evaluated our
model by conducting experiments on services deployed in
different regions of the Amazon cloud. The evaluation re-
sults suggest that our model improves both performance and
accuracy of the prediction when compared to the current
state-of-the-art models.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation

Keywords
Reliability, Prediction model, Clustering, Web services, Cloud
computing

1. INTRODUCTION
The majority of modern web applications pull content and
functionalities through atomic modules embedded from var-
ious sources located worldwide. Although the atomic mod-

ules are usually built using different technologies, the im-
plementation is often guided by the set of rules and princi-
ples defined in Service-oriented architecture (SOA) [1]. The
SOA is an architectural style mostly used for design and
implementation of information systems that support vari-
ous enterprise solutions, but is also commonly applied for
more general applications. The basic application functional-
ities (e.g. process-payment, new-order, fetch-video, retrieve-
social-feed), can be implemented as reusable atomic services
accessible through publicly available interfaces. To support
more advanced application functionalities, SOA provides the
ability to compose the atomic services into composite ones.
The researchers have already proposed a variety of service
composition languages such as: BPEL [2], SSCL [3].

The process of composite application construction requires
qualitative selection of atomic service candidates [4]. The
perceived performance of the entire application depends on
both functional and nonfunctional application attributes,
which are highly influenced by the selected atomic candi-
dates’ functional and nonfunctional qualities. To create an
efficient composite application, the developer should gain re-
liable information on both atomic candidates’ functionalities
and their nonfunctional attributes such as security, reliabil-
ity, availability [5].

In this paper, we focus on atomic web services reliability as
one of the most important nonfunctional application prop-
erties. We define service reliability as the probability that
a service invocation will be completed successfully. This
means a correct response to the service invocation is suc-
cessfully received under the specified conditions and time
constraints. In this case, the reliability can be computed
from the history invocation data as the ratio of the num-
ber of successful invocations against the total number of
performed invocations. In the related literature this defini-
tion of reliability also appears as successful delivery rate [6]
and user-perceived reliability [7]. It should be noted that
the applied user-centric definition of reliability differs from
the traditional system-centric reliability definition used for
”never ending” systems [8]. However, we find the definition
of ”reliability on demand” is more suitable for web services
since service invocations are discrete and relatively sparse
events.

The accuracy and relevance of the computed reliability value
depends on the quality and quantity of the past invocation

sample. However, gaining a numerous and diverse past invo-
cation sample proves to be a very difficult task in practice.
There is a difference in reliability perception from the user’s
and service provider’s perspective [8]. The reliability value
computed considering exclusively the data obtained by the
service provider could be incorrect for a specific user due
to oscillations caused by a variety of parameters that influ-
ence the invocation context. For example, users in different
geographic locations might experience different reliabilities
while using the same service. From the service user’s per-
spective, further obstacles are related with the service usage
cost and performance issues. For example, collecting the in-
vocation sample by performing service reliability testing can
be extremely expensive for the services that are not free of
charge. On the other hand, conducting ”stress testing” can
significantly impact the performance of the service and also
make the measured data irrelevant [9].

One possible approach to overcome these obstacles is to ob-
tain partial but relevant history invocation sample (1) and
to utilize prediction methods for the estimation of missing
reliability records (2). The partial invocation sample can be
gained by leveraging human feedback regarding service us-
age and collecting as much data as possible from the service
providers. The researchers have proposed several prediction
models that leverage the available past invocation records
to estimate predictions for the ongoing invocations [10–13].
The proposed state-of-the-art prediction models are based
on collaborative filtering technique, often used in recommen-
dation systems [14]. Collaborative filtering based models
compute statistical similarities among different entities and
estimate the missing reliability values by employing the ex-
isting data from the statistically most similar entities.

Although the existing collaborative filtering based approaches
achieve promising performance, they demonstrate disadvan-
tages primarily related to the prediction accuracy in dy-
namic environments and scalability issues influenced by the
invocation sample size. Regarding the prediction accuracy,
collaborative filtering provides accurate recommendations in
static environments where the collected data records are rel-
atively stable. This means that the records remain up-to-
date for a reasonably long period of time (e.g. movie ratings,
product recommendations). However, service-oriented sys-
tems are deployed on the Internet, which is a very dynamic
environment where service providers register significant load
variations during the day [15]. In such a dynamic environ-
ment, user perceived service reliability may considerably dif-
fer depending of the actual time of invocation. Furthermore,
collaborative filtering approaches store reliability values for
each user and service pair. Having millions of users and a
substantially large number of services, these approaches do
not scale.

In this paper, we present, CLUS (CLUStering), the model
for reliability prediction of atomic web services based on K-
means clustering algorithm [16]. The proposed model aims
to improve performance of the state-of-the-art prediction
models by addressing the following issues:

• To improve the prediction accuracy, we consider user–,
service– and environment– specific parameters that de-
termine the service invocation context. While existing

approaches implicitly consider only user– and service–
specific parameters, we introduce the environment spe-
cific parameters that describe current load conditions
in the environment. We disperse the collected past in-
vocation data across the additional dimension that cor-
responds with the respected environment conditions.

• To address the scalability issues, we reduce the redun-
dant data by grouping users and services into respected
user and service clusters according to their reliability
performance using K-means clustering algorithm. The
authors in [17, 18] show that different nonfunctional
qualities of a service are influenced by specific service
characteristics such as internal complexity or service
location. In fact, the existing approaches [10, 11] sup-
port claims that similar users and services obtain simi-
lar reliability values, which can be utilized to aggregate
the redundant data and improve scalability.

For evaluation purposes, we perform series of experiments
varying different parameters that describe the service invo-
cation context. We measure different performance aspects
of our model and compare them with the prediction per-
formance of the current state-of-the-art models. The evalu-
ation results suggest that our model significantly improves
the prediction accuracy with 56% lower RMSE (Root Mean
Square Error) than the current state-of-the-art approaches
based on collaborative filtering [13]. Furthermore, the evalu-
ation results support our claims of scalability improvement.
The presented CLUS model reduces the prediction execu-
tion time for two orders of magnitude compared to other
state-of-the-art approaches.

The rest of the paper is organized as follows. Section 2 as-
sembles the related work. Section 3 overviews prediction
process and describes parameters used in our model. Sec-
tion 4 formally describes each particular CLUS step. Sec-
tion 5 describes the performed experiments and analyzes
the evaluation results. Section 6 concludes the paper by
summarizing advantages and disadvantages of the presented
approach.

2. RELATED WORK
The researchers have proposed a variety of different ap-
proaches for modeling the reliability of traditional software
systems [19–27]. As stated in section 1, web services pro-
vide their functionalities in a dynamic environment (inter-
faces accessible over the Internet) where the service invo-
cation outcome depends on numerous different impacts de-
termining the invocation context. Hence, these traditional
approaches are not suitable for modeling the reliability of
web services.

When considering the reliability properties of service-oriented
systems, most of the researchers commonly focus on study-
ing the reliability of service compositions. In such manner,
plenty of different approaches for prediction of the compos-
ite services reliability have been proposed [28–34]. These
existing approaches usually assume the reliability values of
the atomic services are available or scarcely indicate how
they can be acquired. However, the arguments mentioned
in section 1 indicate that collecting a comprehensive sample
of atomic services reliability values is a nontrivial task.

The most successful approaches for prediction of atomic ser-
vices reliability [10–13] are based on the collaborative filter-
ing technique [14]. There are three types of collaborative fil-
tering defined in literature [14], memory-based, model-based
and hybrid. The model-based and hybrid collaborative fil-
tering are more computationally complex and difficult to
implement. In fact, these types often require some addi-
tional domain specific information to be applied in a par-
ticular field. In the paper, we refer to the memory-based
collaborative filtering used in current state-of-the-art rec-
ommendation systems [35–39]. The memory-based collabo-
rative filtering extracts the information or patterns by statis-
tically correlating the data obtained from multiple entities
like agents, viewpoints or data sources. The advantage of
collaborating filtering is that lacking information for a par-
ticular entity can be predicted using the available data from
the most statistically similar entities.

The collaborative filtering technique uses user-item matrix
to store the data for reliability prediction. Each pui value in
the matrix represents the reliability of the service i perceived
by the user u. In real service-oriented systems, matrices can
contain millions of user and services, having new user-service
pairs arise in real time. Furthermore, each user often con-
sumes only a small subset of services. Hence, the user-item
matrix is very sparsely filled and contains numerous empty
cells presenting reliability values that need to be predicted.

Collaborative filtering can be applied in two different ways.
The UPCC approach combines the information collected
from different users and predicts missing reliability values
using the available data from the most statistically similar
users [10]. The IPCC approach collects the data from dif-
ferent services and predicts missing reliability values based
on available values from the most statistically similar ser-
vices [11]. The Hybrid approach [12,13] achieves better pre-
diction performance by employing both the data retrieved
from similar users and services and predicting missing reli-
ability values as a linear combination of UPCC and IPCC
approaches. As noted in section 1, these approaches suffer
from potential accuracy as well as scalability issues.

In our recent work [40], we addressed the disadvantages of
the collaborative filtering based approaches by improving
prediction accuracy and scalability. However, the model we
proposed (LUCS) is applicable in the environments where
the model’s input parameters are highly available. For ex-
ample, we group services into service classes considering ser-
vice’s computational complexity and we assume each ser-
vice’s class is explicitly known as the input parameter. As
the amount of services with missing input parameters in-
creases the prediction accuracy deteriorates.

To address this issue, we propose a new model that clusters
users, services and time windows according to the perceived
reliability performance. In this way, the lack of input param-
eters does not degrade the prediction performance, since the
parameters are extracted from the past invocation sample
based on the reliability performance.

3. RELIABILITY PREDICTION OVERVIEW
In this section we provide the overview of the CLUS, model
for prediction of atomic web services reliability. With the

aim to improve the prediction accuracy and scalability, we
define user–, service– and environment specific parameters
that determine service invocation context in greater detail
then the related prediction models. We group the collected
history invocation data across three different dimensions as-
sociated with the defined parameters. The rest of the section
describes the parameters that determine service invocation
context (Section 3.1) and present the reliability prediction
process in CLUS model (Section 3.2).

3.1 Invocation context parameters
In our model we distinguish three groups of parameters that
impact the reliability performance of the service: user–,
service– and environment– specific parameters.

3.1.1 User-specific parameters
We associate user-specific parameters with user-introduced
fluctuations in the service reliability performance. User-
specific parameters include a variety of factors that might
impact the reliability of s service such as user’s location,
network and device capabilities, usage profiles. To incor-
porate user-specific parameters in the process of prediction,
we group users into clusters according to their reliability
performance gained from the past invocation sample using
K-means clustering algorithm.

3.1.2 Service-specific parameters
Service-specific parameters are related with the impact of
service characteristics on the reliability performance. Nu-
merous factors influence service-specific parameters such as
service’s location, computational complexity and system re-
sources (e.g. CPU, RAM, disk and I/O operations). We in-
clude the service-specific parameters in the prediction pro-
cess by grouping services into clusters according to their
reliability performance obtained from the past invocation
sample using K-means clustering algorithm.

3.1.3 Environment-specific parameters
Environment-specific parameters relate to the current con-
ditions in the environment such as service provider load or
network performance at the time of the invocation. For the
purposes of evaluation, we only consider service load as the
environment parameter. We define the service load as the
number of requests received per second. The nonfunctional
qualities of a service, such as availability and reliability are
significantly influenced by fluctuations in the service load.
Since web servers register considerable load variations dur-
ing the day [15], we divide the day into an arbitrary number
of time windows. In order to improve the prediction accu-
racy we disperse the past invocation data among different
time windows. Finally, we group time windows into clusters
according to the reliability performance computed from the
past invocation sample using K-means clustering algorithm.

3.2 Reliability prediction process
The high level overview of CLUS, model for prediction of
atomic web services is depicted in Figure 1. Prior to reliabil-
ity prediction, we perform the clustering of the history invo-
cation sample. First, we cluster the time windows associated
with the environment conditions according to the reliability
performance fetched from the past invocation sample. Then,

Data ClusteringData Clustering

Environment
clustering

Raw
Data

Clustered
Data

Reliability

(1c)
Users

clustering
Services

clustering
(2c)

Predictionr(u,s,t)

(3c)

Data

Process

Input/Output

Figure 1: Reliability prediction overview

we cluster users (2c) and services (3c) considering their re-
liability performance for each time window cluster. Once
the data is clustered, the prediction of the atomic service
reliability can be performed.

4. RELIABILITY PREDICTION MODEL
In this section we present CLUS, the model for atomic web
services reliability prediction. We separately describe each
step of data clustering process that is crucial for the relia-
bility prediction.

We formally define a service invocation as:

r(u, s, t). (1)

In the presented equation (1), u is the user executing the
invocation, s is the service to be invoked and t is the actual
time of the service invocation.

The history invocation sample contains data addressed as
in the equation (1). In order to make scalable and accurate
reliability predictions for future service invocations, we need
to transform the data into a more structured and compact
form. The idea is to store the data into a three-dimensional
space D[u, s, e] according to the defined groups of parame-
ters. Each dimension u, s and e in space D is associated
with one group of parameters respectively. In the following
sections we will describe how particular records are clus-
tered and associated with environment–, user– and service–
specific parameters. Finally, we describe the creation of
space D, i.e. how each entry in D is calculated and how
the reliability is predicted for an ongoing service invocation.

4.1 Environment-specific data clustering
First, we define the set of different environment conditions
E as follows:

E = {e1, e2, ..., ei, ..., en}, (2)

where ei refers to a specific environment condition deter-
mined by service provider load and n is an arbitrary number
of distinct environment conditions.

The aim is to correlate each available history invocation
record with the service provider load at the time it was per-
formed. As already stated in Section 1, the analyses of the
collected data from different service providers can pinpoint
the regularities in the load distribution for certain time pe-
riods [15, 41, 42]. Thus, we divide the day in an arbitrary

number of time windows, where each time window wi is de-
termined with its start time ti and end time ti+1. We assume
that the environment-specific parameters are stable during
the same time window. Once the time windows are deter-
mined, we calculate the average reliability value rwi for each
time window wi:

pwi =
1

|Wi|
∑
r∈Wi

pr (3)

where Wi is the set of records within the time window wi, r
is the record from the past invocation sample and pr is user
perceived reliability for that invocation.

The average reliability value pwi is assigned to each re-
spected time window wi. Each particular time window is
clustered using K-means clustering algorithm into an ap-
propriate environment condition ei according to its aver-
age reliability value. Now we can correlate each particular
record from the history invocation sample with the environ-
ment conditions at the time it was performed. By applying
a transitive relation, if the record about previous invoca-
tion r(u, s, t) belongs to the time window wi and the time
window wi is clustered into environment condition ei, than
the invocation r(u, s, t) is performed during the environment
condition ei.

4.2 User-specific data clustering
Next, we define the set of different user groups U as follows:

U = {u1, u2, ..., ui, ..., um}, (4)

where each user group ui contains users that achieve similar
reliability performance, while m is the number of different
user groups.

For each user u in the past invocation sample, we calculate
the n-dimensional reliability vector pu as follows:

pu = {pe1 , pe2 , ..., pei , ..., pen}, (5)

where each vector dimension pei represents the average re-
liability value perceived by the given user u during the en-
vironment conditions ei. Once the the average reliability n-
dimensional vector is calculated and assigned to each user,
we perform K-means clustering of users into different user
groups according to their reliability vector’s pu values. Now
we can easily correlate each available previous invocation
record r(u, s, t) with an appropriate user group ui.

4.3 Service-specific data clustering
Finally, we define the set of service groups S as follows:

S = {s1, s2, ..., si, ..., sl}, (6)

where each service group s contains services that achieve
similar reliability performance, while l is an arbitrary num-
ber of different service groups.

For each service s in the past invocation sample, we calculate
the n-dimensional reliability vector ps as follows:

ps = {pe1 , pe2 , ..., pei , ..., pen}, (7)

where each vector dimension pei represents the achieved
average reliability for invoking service s during the envi-
ronment conditions ei. Once the the average reliability n-
dimensional vector is calculated for each service, we perform

K-means clustering of services into different service groups
according to their reliability vector’s ps values. Now we
can easily correlate each available previous invocation record
r(u, s, t) with appropriate service group si.

4.4 Creation of space D and prediction
Once each available history invocation record r(u, s, t) is as-
sociated with the respected data clusters ei, uk and sj , we
can generate the space D and calculate each value in D. We
calculate each entry as follows:

D[uk, sj , ei] =
1

|R|
∑
r∈R

pr. (8)

where pr is user perceived reliability for invocation r and:

R = {r(u, s, t)|r ∈ uk ∧ r ∈ sj ∧ r ∈ ei} (9)

Now, let us assume we have the ongoing service invocation
rc(uc, sc, tc) whose reliability pc needs to be predicted. First,
we check if there is a set H in the past invocation sample
containing record with the same invocation context param-
eters as rc:

H = {rh|uh = uc ∧ sh = sc ∧ th, tc ∈ wi}. (10)

If the set H is not empty, than we calculate the reliability
pc by using the existing reliabilities in the set H:

pc =
1

|H|
∑
r∈H

pr. (11)

Otherwise, if the set H is empty we calculate the reliability
pc using the data stored in the space D as follows:

pc = D[uk, sj , ei], (12)

where current user uc belongs to the user group uk, current
service sc belongs to the service group sj and the actual
time tc belongs to the time window wi associated with the
environment conditions ei.

5. EVALUATION
In this section we present the evaluation results that sup-
port our claims that the CLUS model improves the pre-
diction accuracy and overcomes scalability issues present in
the state-of-the-art models used in modern recommenda-
tion systems. To prove our claims we conducted series of
experiments analyzing several quality aspects of the CLUS
model. We compare our model with three approaches based
on the collaborating filtering technique: user-based approach
(UPCC) [10], item-based approach (IPCC) [11] and the
Hybrid approach [12, 13]. To predict the missing reliabil-
ity values, collaborative filtering based approaches calculate
most similar entities using Pearson Correlation Coefficient
(PCC). The UPCC approach employs the available infor-
mation from most similar users, while IPCC approach em-
ploys the available information from the most similar ser-
vices. The Hybrid approach employs both the available
information from similar users and similar services. Our
results suggest that CLUS provides best prediction perfor-
mance among the competing approaches considering both
prediction accuracy and computational performance.

To evaluate prediction accuracy for atomic services, we use
standard error measures: Mean Absolute Error, (MAE) and
Root Mean Square Error (RMSE). The MAE represents the

Service class 1 2 3 4 5 6 7
Matrix rank 350 310 280 250 210 180 150

Table 1: Matrix ranks in different service classes

average magnitude of errors for the predicted reliability val-
ues:

MAE =

∑N
j |pj − p̂j |

N
(13)

where N is the cardinal number of the prediction set, pj
the reliability fetched from the data collected in experiment
while p̂j is the predicted reliability value. The RMSE is a
quadratic scoring rule which also represents average magni-
tude of errors:

RMSE =

√∑N
j (pj − p̂j)2

N
(14)

To evaluate the impact of propagation of atomic service pre-
diction errors on the reliability of the composite service, we
apply a more suitable percentage measure Root Mean Square
Percentage Error (RMSPE). The RMSPE is a quadratic
scoring rule and it measures average percentage error mag-
nitude:

RMSPE =

√√√√ 1

N

N∑
j

(Pj − P̂j)

Pj

2

(15)

where Pj is the composite service reliability calculated as
described in [43] using reliability values measured in the ex-

periment, while P̂j is the composite reliability calculated
using predicted reliability values.

All, MAE, RMSE and RMSPE, can range from 0 to ∞.
They are negatively-oriented scores, which means that lower
values are better.

The rest of the section is organized as follows. Section 5.1
describes the experimental setup. Section 5.2 analyses the
impact of the amount of collected data on the accuracy
and computational performance of the prediction for each
competing approach. Section 5.3 studies the impact of the
number of clusters on prediction accuracy and timing per-
formance of the CLUS approach. Section 5.4 examines how
errors in prediction of atomic services reliabilities impact the
estimation of the composite service reliability. Section 5.5
provides the analysis of theoretical worst case complexity as
well as the expected practical complexity for the different
prediction approaches.

5.1 Experimental setup
In order to evaluate different properties of CLUS, we con-
structed a controlled environment containing a set of web
services. We implemented web services that create two ran-
dom matrices and perform the operation of matrix multi-
plication. By implementing our own services, we were able
to reduce the external noise and control the service specific
parameters such as service locations and complexity as well
as the environment conditions such as different loads.

In our experiments we achieved different service-specific pa-

Load level 1 2 3 4 5 6 7
Time interval / sec 3 4 5 6 7 8 9

Table 2: Time intervals in different load levels

rameters by implementing services with different computa-
tional complexity and by placing services on different geo-
graphic locations worldwide. Although a variety of parame-
ters influence the computational complexity of services, for
the reasons of simplicity, we chose the amount of memory to
distinguish services by their computational complexity. Any
other parameter could be considered in similar manner and
this does not reduce the generality of our experiments. We
created seven different classes of services for matrix multi-
plication having each class operate with matrices of different
rank as shown in Table 1.

To introduce another service-specific parameter we placed 49
web services in seven available Amazon EC2 (Elastic Com-
pute Cloud) [44] geographic regions: Ireland, Virginia, Ore-
gon, California, Singapore, Japan and Brazil, having each
service class in each region. Each service was deployed
on an Amazon machine image running Microsoft Windows
Server 2008 R2 SP1 Datacenter edition, 64-bit architecture,
Microsoft SQLServer, Internet Information Services 7 and
ASP.NET 3.5.

To introduce user-specific parameters, we simulate users by
placing instances of loadUI [45] tool, running as distributed
agents waiting for the tasks to be delivered and executed, on
different locations within the cloud. The tool loadUI is an
open source tool intended for stress and performance testing
of web services which enables creation of various test cases.

We achieved different environment-specific parameters by
creating test cases with different load generators defined by
the time interval between sending each invocation. We bur-
dened the services with seven different levels of load by alter-
ing the time interval between sending each request as defined
in Table 2. We created a special test case for each load level
and delivered it to all agents running in the cloud. During
the test case, each agent sent 150 requests to each deployed
service. Finally, we collected measured data from the agents
and restarted the machines hosting web services to recover
for the next test case. As part of our experiments, we per-
formed overall 360.150 distinct web service invocations.

5.2 The impact of collected data density
In this section we study the impact of data density on the
prediction performance for all considered approaches. Sec-
tion 5.2.1 analyses the impact of data density on prediction
accuracy while section 5.2.2 analyses how the data density
impacts computational performance of the prediction.

We simulate different amounts of the collected data by al-
tering data densities between 5% and 50% of all the data
collected in experiments with the step value of 5%. We
distinguish two different cases regarding the environment-
specific parameters. In the first case we consider dynamic
environment with different loads having request frequencies
from req/3 sec to req/9 sec. In the second case we consider
a static environment with constant load having request fre-

quency of req/3 sec.

While describing the CLUS model (Section 4), we indicated
an arbitrary number of user, service and environment condi-
tions clusters. However, in this experiment we assume that
each parameter space has 7 clusters, which is related to the
number of service classes and load settings in the experi-
mental setup.

To evaluate different aspects of prediction performance we
create the testing set consistent of all the collected data
for both cases. We randomly include 5% of the collected
data into the prediction data set. Once the data is included
into the prediction set, we predict the reliability for all the
missing records for all competing approaches. Since the ac-
tual reliability values have been measured during the ex-
periments, we calculate the MAE and RMSE values. In
addition, we measure the time that it takes to compute the
predictions for all approaches. In the next step, we include
another 5% of the collected data i to the prediction data set
and we recalculate the reliability predictions and prediction
performance measures. We repeat this procedure until the
calculation is done for the data density of 50%.

5.2.1 Prediction accuracy
The evaluation results in the case of dynamic environment
are depicted in Figures 2a and 2b. The Figure 2a captures
the MAE values, while the Figure 2b captures the RMSE
values in relation to the data density for all the analyzed
approaches. The results show that the prediction accuracy
highly depends on the data density (e.g. for the IPCC ap-
proach the RMSE value varies between 0.281 and 0.089). It
is obvious from the presented figures that CLUS approach
provides the best prediction accuracy. As can be expected,
CLUS improves its prediction accuracy as the density in-
creases lowering the MAE values from 0.085 to 0.019 and
RMSE values from 0.123 to 0.039. It should be noted that
our model achieves a slightly better RMSE value of 0.084 for
the density of 10%, than the competing Hybrid approach for
the density of 50% with RMSE value of 0.089. All collab-
orative filtering based approaches achieve similar prediction
accuracy that cannot be considerably improved with the in-
crease of the collected data due to negligence of environ-
ment’s dynamic nature and inefficient usage of the collected
data.

The Figures 2c and 2d depict the evaluation results in a
static environment, capturing the MAE and RMSE values
for all the competing approaches in relation to the data den-
sity. As can be expected, all the approaches improve predic-
tion accuracy with the increase of data density. The CLUS
approach provides better prediction accuracy for the lower
data densities (e.g. the RMSE value of 0.119 against Hybrid
RMSE value of 0.150 for the density of 5%). As the data
density increases, the collaborative filtering approaches pro-
vide better prediction accuracy (e.g. CLUS RMSE value
of 0.045 against Hybrid RMSE value of 0.025 for the den-
sity of 50%). This result is unsurprising since our K-means
clustering based approach aggregates the collected data by
clustering users and services which degrades the prediction
accuracy. Note that lower data densities are more realistic
on the Internet, the environment with substantially large
number of users and services.

æ

æ

æ
æ

æ
æ æ æ

æ æ

à

à à à à à à à à à

ì

ì

ì

ì ì ì ì ì ì ì

ò

ò
ò

ò ò ò ò ò ò ò

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Density � %

0.05

0.10

0.15

0.20

MAE

ò Hybrid

ì uPCC

à iPCC

æ CLUS

(a) MAE, with load intensity

æ

æ

æ æ
æ

æ æ æ
æ æ

à

à à à à à à à à à

ì

ì

ì

ì ì ì ì ì ì ì

ò

ò
ò

ò ò ò ò ò ò ò

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Density � %

0.05

0.10

0.15

0.20

0.25

0.30
RMSE

ò Hybrid

ì uPCC

à iPCC

æ CLUS

(b) RMSE, with load intensity

æ

æ

æ æ
æ

æ æ æ
æ æ

à

à
à à à

à à à à à

ì

ì

ì

ì ì

ì
ì ì ì ì

ò

ò

ò

ò ò
ò

ò ò ò ò

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Density � %

0.05

0.10

0.15

MAE

ò Hybrid

ì uPCC

à iPCC

æ CLUS

(c) MAE, without load intenisty

æ

æ

æ æ
æ

æ æ æ æ æ

à

à
à à à

à à
à à à

ì

ì

ì

ì ì
ì

ì ì ì ì

ò

ò

ò

ò ò
ò ò ò ò ò

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Density � %

0.05

0.10

0.15

0.20

RMSE

ò Hybrid

ì uPCC

à iPCC

æ CLUS

(d) RMSE, without load intenisty

Figure 2: The impact of density on prediction accuracy

æ
æ æ æ æ æ æ æ æ æ

à à à à à à à à à à

ì ì ì ì ì ì ì ì ì ì

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Density � %

101

102

103

104
Time � ms

ì CF predictions
à CLUS predictions
æ Clustering time

(a) Prediction time, with load intensity

æ æ æ æ æ æ æ æ æ æ

à

à à à à à à à à à

ì ì ì ì ì ì ì ì ì ì

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Density � %

101

102

103
Time � ms

ì CF predictions
à CLUS predictions
æ Clustering time

(b) Prediction time, without load intensity

Figure 3: The impact of density on timing performance of the prediction

5.2.2 Computational performance
The evaluation results for computational performance are
captured in Figures 3a and 3b. We chose the execution time
as the measure for computational performance. The figures
depict aggregated prediction time for the whole testing set in
milliseconds in relation to the data density for the collabora-
tive filtering and CLUS approaches in the logarithmic scale.
Since all the collaborative filtering based approaches have
similar analytical complexity (see section 5.5), we choose

the Hybrid approach as the representative for the computa-
tional performance. The CLUS prediction process is done
in two phases data clustering and prediction calculation as
depicted in figure (1). Thus, we present both clustering time
and prediction time for the CLUS approach. Note that the
data clustering phase is done only once prior to the predic-
tion phase.

Figure 3a depicts computational performance evaluation for

æ

æ

æ
æ æ

æ æ æ

à à à à à à à à

2 3 4 5 6 7 8 9
Number of clusters

0.02

0.04

0.06

0.08

0.10

RMSE

à Hybrid

æ CLUS

(a) RMSE, density of 20%

æ

æ

æ
æ

æ
æ æ æ

à à à à à à à à

2 3 4 5 6 7 8 9
Number of clusters

0.02

0.04

0.06

0.08

0.10
RMSE

à Hybrid

æ CLUS

(b) RMSE, density of 50%

Figure 4: The impact of number of clusters on prediction accuracy

æ

æ
æ æ æ æ æ æ

à à à à à à à à

ì ì ì ì ì ì ì ì

2 3 4 5 6 7 8 9
Number of clusters

101

102

103

104
Time � ms ì CF predictions

à CLUS predictions
æ Clustering time

(a) Prediction time, density of 20%

æ

æ
æ æ æ æ æ æ

à

à
à à à à à à

ì ì ì ì ì ì ì ì

2 3 4 5 6 7 8 9
Number of clusters

101

102

103

104
Time � ms ì CF predictions

à CLUS predictions
æ Clustering time

(b) Prediction time, density of 50%

Figure 5: The impact of number of clusters on timing performance of the prediction

the competing approaches in the case of a dynamic envi-
ronment. It is obvious from the presented graphs that the
CLUS approach provides better performance for the two or-
ders of magnitude (e.g. prediction time of 4454 ms for col-
laborative filtering approach against CLUS clustering time
of 41 ms and prediction time of 17 ms for the data density
of 30%). Note that both CLUS clustering and prediction
times are relatively stable as the data density changes. On
the other hand, the collaborative filtering approach predic-
tion time depends on the data density. For the lower data
densities the computational performance is better (predic-
tion time of 3562 ms for the data density of 5%) since the
low amounts of the collected data require less computation.
With the increase of the collected data, the computation
time increases as can be expected (e.g. prediction time of
4454 ms for the density of 30%). As the amount of the col-
lected data continues to increase, the number of records with
available reliability values grows. Thus, the reliability value
needs to be predicted for fewer records which in turn results
in decrease of the prediction time (e.g. prediction time of
3872 ms for the density of 50%).

The computational performance of the prediction in the case
of a static environment is presented in Figure 3b. Like in
the case of a dynamic environment, the performance is pre-
sented in the logarithmic scale. The evaluation results show

that CLUS approach provides better performance for the
order of magnitude (e.g. prediction time of 638 ms for col-
laborative filtering approach against CLUS clustering time
of 41 ms and prediction time of 3 ms for the data density of
30%). The CLUS approach provides almost constant clus-
tering and prediction time as the data density changes, while
collaborative filtering approaches manifest similar behavior
like in the case of a dynamic environment.

5.3 The impact of the number of clusters
As described in Section 4, CLUS supports an arbitrary num-
ber of user, service and environment conditions clusters. The
number of clusters is a model parameter which can be ad-
justed to a specific environment. In this section we analyze
how number of clusters impacts different aspects of the pre-
diction performance. To evaluate the impact of number of
clusters we consider dynamic environment conditions with
various load levels. Similarly like with the density evalua-
tion, we include all the collected data in the testing set for
evaluation. In the evaluation process, we vary the number of
user and service clusters keeping the number of environment
conditions clusters constant at value of 7. We choose the ini-
tial value of 2 for the number of user and service clusters.
Then, we calculate the reliability predictions and prediction
performance measures. In the next step, we increase the

æ æ
æ

æ

æ

æ

æ
æ

æ
æ

à à

à

à

à

à

à
à

à
à

ì ì

ì
ì

ì

ì
ì

ì
ì ì

ò ò

ò
ò

ò

ò
ò

ò
ò

ò

2 4 6 8 10 12 14 16 18 20
Number of services

0.2

0.4

0.6

0.8

1.0
RMSPE

ò Hybrid

ì uPCC

à iPCC

æ CLUS

(a) Density 20%

æ æ
æ æ

æ
æ

æ
æ

æ
æ

à à

à

à

à

à

à
à

à
à

ì ì

ì
ì

ì

ì
ì

ì
ì

ì

ò ò

ò
ò

ò

ò
ò

ò
ò

ò

2 4 6 8 10 12 14 16 18 20
Number of services

0.2

0.4

0.6

0.8

1.0
RMSPE

ò Hybrid

ì uPCC

à iPCC

æ CLUS

(b) Density 50%

Figure 6: The propagation of prediction error on the service composition reliability in relation with number of atomic services

number of clusters for the step value of 1 and we recalculate
the predictions and measures. The procedure is repeated
until the number of clusters reaches the value of 9. We sep-
arately evaluate the impact of the number of clusters for the
data densities of 20% and 50%.

5.3.1 Prediction accuracy
The evaluation results capturing the impact of clusters num-
ber on prediction accuracy are shown in Figure 4. Each sub-
figure presents prediction accuracy for the CLUS approach
and a collaborative filtering representative - the Hybrid ap-
proach. Figure 4a depicts the RMSE values in relation to
the number of clusters for the data density of 20%. The
performance of the Hybrid approach is not influenced by
altering the number of clusters. It achieves the constant
RMSE value of 0.072 for the density of 20%. As can be ex-
pected, the prediction accuracy of the CLUS is increased as
the number of clusters grows (the RMSE value of 0.105 for 2
clusters and the RMSE of 0.060 for 7 clusters). In fact, the
greater number of clusters means less aggregation which im-
proves the prediction accuracy. Note that further increase in
the number of clusters after the value of 7 does not improve
accuracy. This behavior can be explained by the experimen-
tal setup with 7 highly distinct service classes. The evalua-
tion results of the prediction accuracy for the density of 50%
are depicted in Figure 4b. Similarly, like for the density of
20%, the prediction accuracy is increased as the number of
clusters grows (the RMSE value of 0.083 for 2 clusters and
the RMSE of 0.037 for 9 clusters). The Hybrid approach
achieves the RMSE value of 0.890.

5.3.2 Computational performance
The impact of cluster number on computational performance
of the prediction is presented in Figure 5. Each subfigure
depicts prediction time aggregated on the whole testing set
for both CLUS approach and collaborative filtering repre-
sentative - the Hybrid approach. The results are shown in
the logarithmic scale. Note that figures separately capture
clustering and prediction time for each phase of the CLUS
approach. Figure 5a depicts prediction time for the density
of 20% in relation to the number of clusters. The Hybrid
approach timing performance is not influenced by the num-
ber of clusters and it achieves the prediction time of 4317

ms. The CLUS prediction time is relatively stable and ti
is not influenced by altering the number of clusters. On
the other hand, the clustering time increases as the number
of clusters grows (from 20 ms for 2 clusters to 64 ms for
9 clusters). Knowing the computational complexity of the
K-means clustering (see section 5.5), this behavior is quite
expected. Similar results are obtained for the data density of
50% as shown in Figure 5b. Collaborative filtering approach
achieves slightly better performance compared to prediction
time for the density of 20% which is an expected result (see
Section 5.2.2 for explanation).

5.4 Impact of error propagation on composite
service reliability

In previous sections we studied the prediction accuracy and
performance of the competing approaches considering exclu-
sively atomic services. The real world examples of service
usage imply orchestration and coordination of more atomic
services into composite services to support more advanced
functionalities. The reliability of a composite service highly
depends on reliability of each atomic service building block.
Knowing the atomic services reliability values, composite
service reliability can be computed as described in [43]. In
this section we analyze the impact of errors in atomic ser-
vices reliability prediction on the computation of composite
service reliability. We consider the case of a dynamic en-
vironment with varying loads and the constant number of
CLUS clusters, set to the value of 7.

In order to analyze the propagation of errors on compos-
ite service reliability estimation, we begin with number of
1000 randomly generated service compositions containing 2
atomic services composed into different basic structural pat-
terns as described in [43]. We compute each service com-
position reliability value using reliability predictions of the
underlaying atomic services and we calculate the RMSPE
value for each considered prediction approach. In the next
step we increase the number of atomic services in service
compositions for the step value of 2 and we recalculate the
predictions and the RMSPE values. We repeat this proce-
dure until the calculation is done for 20 of atomic services
in the compositions.

The Figures 6a and 6b depict the impact of error propaga-
tion on composite service reliability in relation to the num-
ber of atomic services within a service composition. The
Figure 6a captures the RMSPE values for each competing
approach for the density of 20%, while Figure 6b captures
the RMSPE values for the density of 50%. As can be ex-
pected, the accuracy of prediction for the service compo-
sitions decreases as the number of atomic services within
a composition increases (e.g. the CLUS approach at the
density of 20% has the RMSPE value between 0.390 for
2 atomic services, and 0.739 for 20 atomic services). It is
obvious from the graphs that CLUS approach outperforms
all the other considered approaches. However, the analysis
demonstrates that even minor errors in prediction of atomic
services reliability result in significant errors when calculat-
ing the reliability of a service composition.

5.5 The analysis of complexity
We propose the CLUS approach with two main goals: to
improve the accuracy of the reliability prediction (1), and
to improve the scalability of the prediction (2). The evalua-
tion results presented in previous sections confirm that our
approach achieves both of the goals. In this section, we pro-
vide the analysis of complexity for the CLUS approach and
collaborative filtering based approaches: IPCC, UPCC and
the Hybrid approach.

The computational complexity required in the IPCC ap-
proach is O(n2 × m), where n is the number of services
and m is the number of users. Similarly, UPCC approach
has the computational complexity of O(m2 × n). Thus, the
computational complexity required in the Hybrid approach
is O(n2 × m + m2 × n). Note that real service oriented
systems on the Internet may comprise out of millions of dif-
ferent users and services which results in serious scalability
and data sparsity issues for collaborative filtering based ap-
proaches.

In general, the computational complexity required for K-
means clustering is O(i× c× d× n), where i is the number
of iterations performed by the procedure, c is the number of
clusters, n is the number of vectors to be clustered and d is
the dimensionality of vectors [16]. Although the theoretical
worst case may take exponential time for the algorithm to
converge [46], in practical case with data points represent-
ing service reliabilities, the algorithm converges very quickly.
However, in the K-means clustering implementation used in
the evaluation process, we limited the number of iterations
to the value of 10.

In the data clustering phase of our approach we perform
K-means clustering three times. First, we cluster different
time windows, which requires the computational complexity
of O(i × |E| × |W | × 1) (the vectors are one-dimensional
here), where i is the number of iterations, |E| is the number
of environment conditions clusters and |W | is the number
of time windows the day is divided to. Then, we separately
cluster users and services. The computational complexity
required in user clustering is O(i × |U | × |E| × m), where
|U | is the number of user clusters, and m is the number of
users. Similarly, the computational complexity of services
clustering takes O(i× |S|×|E|×n), where |S| is the number
of service clusters and n is the number of services.

The values i, |W | and |E| are constant and do not impact
the computational complexity. In our approach we assume
the number of clusters is relatively small when compared to
the number of users and services (|U |, |S| << n,m). Hence,
the practical case computational complexity in the CLUS
approach requires O(m+n). The presented analysis of com-
plexity strongly supports our claims in favor of the CLUS
approach scalability improvement.

6. CONCLUSION
In this paper, we proposed a novel approach for reliability
prediction of atomic web services based on the collected past
invocation data. Our prediction model, called CLUS, im-
proves the existing state-of-the-art approaches based on the
collaborative filtering technique. While existing approaches
implicitly consider only user- and service-specific parame-
ters, we incorporate the environment-specific parameters in
the prediction. In such manner, we significantly improve the
accuracy of the prediction in a dynamic environment with
56% lower RMSE value than the Hybrid, current state-of-
the-art approach.

Further, we reduce the redundant data by applying the prin-
ciple of aggregation. We group similar users and services
considering their reliability performance using K-means clus-
tering algorithm. In this way, we accomplish to improve the
computational complexity while not degrading the accuracy.
We reduce the execution time for two orders of magnitude
when compared to the current state-of-the-art approaches.
Another benefit of our approach is that it can be applied in
different environments due to flexibility reflected in a bal-
anced trade-off between accuracy and scalability. To im-
prove the accuracy, we increase the number of clusters. On
the other hand, reducing the number of clusters makes the
approach more scalable.

Our ongoing research is focused on other nonfunctional qual-
ities of atomic services and integration of different nonfunc-
tional aspects as part of the recommendation system for ap-
propriate service selection.

7. ACKNOWLEDGMENTS
The authors acknowledge the support of the Ministry of
Science, Education, and Sports of the Republic of Croatia
through the Computing Environments for Ubiquitous Dis-
tributed Systems (036-0362980-1921) research project.

8. REFERENCES
[1] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA:

Service-Oriented Architecture Best Practices (The
Coad Series). Prentice Hall PTR, 2004.

[2] OASIS, “Web services business process execution
language version 2.0,” April 2007. OASIS Standard.

[3] S. Sinisa, S. Dejan, and S. Daniel, “Programming
language design for event-driven service composition.,”
AUTOMATIKA - Journal for Control, Measurement,
Electronics, Computing and Communications, 2011.

[4] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms
for web services selection with end-to-end qos
constraints,” ACM Trans. Web, 2007.

[5] A. Avizienis, J.-C. Laprie, B. Randell, and
C. Landwehr, “Basic concepts and taxonomy of

dependable and secure computing,” Dependable and
Secure Computing, IEEE Transactions on, 2004.

[6] L. Zeng, B. Benatallah, A. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang, “Qos-aware
middleware for web services composition,” Software
Engineering, IEEE Transactions on, 2004.

[7] D. Wang and S. T. KISHOR, “Modeling
user-perceived reliability based on user behavior
graphs,” International Journal of Reliability, Quality
and Safety Engineering, 2009.

[8] V. Cortellessa and V. Grassi, “Reliability modeling
and analysis of service-oriented architectures,”
pp. 339–362.

[9] L. Cheung, L. Golubchik, and F. Sha, “A study of web
services performance prediction: A client’s
perspective,”

[10] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical
analysis of predictive algorithms for collaborative
filtering,”

[11] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl,
“Item-based collaborative filtering recommendation
algorithms,”

[12] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Qos-aware
web service recommendation by collaborative
filtering,” IEEE Transactions on Services Computing,
2011.

[13] Z. Zheng and M. R. Lyu, “Collaborative reliability
prediction of service-oriented systems,”

[14] X. Su and T. M. Khoshgoftaar, “A survey of
collaborative filtering techniques,” Adv. in Artif.
Intell., vol. 2009.

[15] Y. Wang, W. M. Lively, and D. B. Simmons, “Web
software traffic characteristics and failure prediction
model selection,” J. Comp. Methods in Sci. and Eng.,
2009.

[16] C. M. Bishop, Pattern Recognition and Machine
Learning (Information Science and Statistics).
Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
2006.

[17] N. B. Mabrouk, S. Beauche, E. Kuznetsova,
N. Georgantas, and V. Issarny, “Qos-aware service
composition in dynamic service oriented
environments,”

[18] Z. Zheng, Y. Zhang, and M. Lyu

[19] M. R. Lyu, ed., Handbook of software reliability
engineering. Hightstown, NJ, USA: McGraw-Hill, Inc.,
1996.

[20] J. D. Musa, A. Iannino, and K. Okumoto, Software
reliability: measurement, prediction, application
(professional ed.). New York, NY, USA: McGraw-Hill,
Inc., 1990.

[21] Z. Jelinski and P. Moranda., “Software reliability
research.,”

[22] M. R. Lyu, “Software reliability engineering: A
roadmap,”

[23] L. H. Putnam and W. Myers, Measures for Excellence:
Reliable Software on Time, within Budget. Prentice
Hall Professional Technical Reference, 1991.

[24] M. Friedman and P. Tran

[25] A. A. Abdel-Ghaly, P. Y. Chan, and B. Littlewood,
“Evaluation of competing software reliability

predictions,” IEEE Trans. Softw. Eng., 1986.

[26] L. Cheung, R. Roshandel, N. Medvidovic, and
L. Golubchik, “Early prediction of software component
reliability,”

[27] L. Cheung, I. Krka, L. Golubchik, and N. Medvidovic,
“Architecture-level reliability prediction of concurrent
systems,”

[28] B. Zhou, K. Yin, S. Zhang, H. Jiang, and A. J. Kavs,
“A tree-based reliability model for composite web
service with common-cause failures,”

[29] V. Grassi and S. Patella, “Reliability prediction for
service-oriented computing environments,” IEEE
Internet Computing, 2006.

[30] W. T. Tsai, D. Zhang, Y. Chen, H. Huang, R. Paul,
and N. Liao, “A software reliability model for web
services,”

[31] J. Ma and H.-p. Chen, “A reliability evaluation
framework on composite web service,”

[32] F. Mahdian, V. Rafe, R. Rafeh, and A. T. Rahmani,
“Modeling fault tolerant services in service-oriented
architecture,”

[33] B. Li, X. Fan, Y. Zhou, and Z. Su, “Evaluating the
reliability of web services based on bpel code structure
analysis and run-time information capture,”

[34] L. Coppolino, L. Romano, and V. Vianello, “Security
engineering of soa applications via reliability
patterns.,” JSEA, 2011.

[35] A. S. Das, M. Datar, A. Garg, and S. Rajaram,
“Google news personalization: scalable online
collaborative filtering,”

[36] H. Guan, H. Li, and M. Guo, “Semi-sparse algorithm
based on multi-layer optimization for recommendation
system,”

[37] C. Wei, W. Hsu, and M. L. Lee, “A unified framework
for recommendations based on quaternary semantic
analysis,”

[38] R. Burke, “Hybrid recommender systems: Survey and
experiments,” User Modeling and User-Adapted
Interaction, 2002.

[39] H. Ma, I. King, and M. R. Lyu, “Effective missing
data prediction for collaborative filtering,”

[40] M. Silic, G. Delac, I. Krka, and S. Srbljic, “Scalable
and accurate prediction of availability of atomic web
services,” IEEE Transactions on Services Computing.

[41] Y. Baryshnikov, E. Coffman, G. Pierre,
D. Rubenstein, M. Squillante, and T. Yimwadsana,
“Predictability of web-server traffic congestion,” Web
Content Caching and Distribution, International
Workshop on, 2005.

[42] M. Andreolini and S. Casolari, “Load prediction
models in web-based systems,”

[43] “Architecture-based software reliability modeling,”
Journal of Systems and Software, 2006.

[44] A. W. Services, “Amazon ec2,” March 2012. Elastic
Compute Cloud.

[45] S. software, “Loadui.” http://www.loadui.org/, 2012.
Open source load and stress testing tool.

[46] A. Vattani, “k-means requires exponentially many
iterations even in the plane,”

